{{query}}
您好,欢迎来到源宇洲!
电池回收再利用技术平台
0411-86645829
0411-87283972
基于3D大孔框架的微型电池实现高效能集成
发布时间: 2023-05-16 预览次数:

1683852437750.png

第一作者:杨威

通讯作者:麦立强*

单位:武汉理工大学


   研究背景

可在芯片上集成的小型化能源,是下一代自供能微型电子设备的核心元件之一。结合了高电化学性能与高集成性的微型储能器件,可为诸多微型电子设备供能,例如:自供能无线微型传感器、便携/免维护微型电子设备、便携可穿戴个人电子设备以及微电子机械系统等。目前,具有梳齿电极的微型超级电容器因其易于制造、环境友好、高面积功率密度以及长循环等优势,获得了研究者们广泛研究。然而,稳定的放电平台与高能量密度对于电子元件运行至关重要,因此微型电池在微型电子设备中发挥的作用至关重要。作为目前商用的微型能源,锂离子薄膜电池具有高面积能量密度与出色的集成特性,然而低循环寿命、低功率密度以及高成本,限制了它们在下一代自供能微电子系统中的应用。因此,具有高安全、高能量/功率密度、无毒、工艺简单的水系微型电池,可作为极具潜力的微型储能器件,应用于下一代微型电子设备中。


   文章简介

近日,武汉理工大学麦立强教授等人在《Advanced Energy Materials》上发表题为“3D Macroporous Frame Based Microbattery With Ultrahigh Capacity, Energy Density, and Integrability”的文章。该工作的要点如下:

1. 在微电极表面构筑大孔框架,利用电沉积法生长聚3,4-乙烯二氧噻吩/二氧化锰混合物薄膜。

2. 通过调控混合物薄膜厚度,实现高负载的同时,兼顾了高比表面积与高电子电导,获得高能量/功率密度。

3. 该微型电池具有极高工作稳定性,可以在高速旋转的轴流风机叶片表面稳定工作。同时无基底电极设计一方面可使其直接安装于设备表面供电;另一方面可以实现多层电极堆叠,成倍提升其面积能量密度。



   ●  图文解读   ●  

首先在微电极表面构筑3D大孔框架,再通过电沉积得到兼顾高负载与多孔结构的PEDOT-MnO2混合物薄膜。在微电极中,电子在镍3D框架中快速传导,同时混合物薄膜的大孔结构也为离子输运提供了高表面积,实现高能量密度与高功率密度的协同。(图1)。

1683852598058.png 

图1.  微型电池工艺流程示意图。

本工作通过快速电沉积法,在微电极表面得到多孔镍3D框架(图2a,b)。通过电沉积生长后,得到了具有多孔形貌的PEDOT-MnO2混合物薄膜,同时微电极外观保持不变。通过EDS表征(图d),MnO2中的Mn元素和PEDOT中的S元素分布均匀。XPS图谱中可以检测到S,Mn等元素的存在(图2e),同时其Mn 2p3/2和Mn 2p1/2的11.7 eV的自旋能量分离,也表明了Mn4+的存在。

003.png 

图2. PEDOT-MnO2微电极的SEM图像及其EDS图谱与XPS图谱。

通过不同厚度的PEDOT-MnO2微电极的电化学表征发现,随着厚度增加,面积比容量逐步增加(图3a),其中PEDOT-MnO2-70的面积比容量可达1.42 mAh cm–2,同时具有较高的容量保持率(图3b,c)。我们采用Dunn等人提出的方法,对微电极的电荷存储机制进行了研究,该微电极的在扫速为1,2,3,4,5 mV s–1时,其电容性贡献占总电荷贡献的比例分别为51.4%, 66.2%, 72.7%, 76.5%, 85.4%(图3e,f)。为了研究混合物对离子扩散系数的影响,我们采用了GITT法对PEDOT-MnO2-70和MnO2-70微电极的离子扩散系数进行了测试。从测试结果发现,两曲线均有两段平台,包括H+离子快速嵌入的平台I和Zn2+慢速嵌入的平台II(图3g,h)。同时,相似的GITT曲线与扩散系数曲线表明两种电极具有相似的存储机制(图2i)。

1683852660173.png 

图3. 微电极的电化学性能图。 

组装后的微型电池的电化学性能由图4表示,微型电池的CV曲线与GCD曲线与PEDOT-MnO2-70微电极的水系性能具有高相似性,表明凝胶电解液与Zn@CNTs负极的稳定性能(图4a,b)。图4c为该微型电池通过GCD曲线计算的能量/功率密度与其他工作的对比拉贡图。可以看出其优异的性能相对于其他锰基微型电池/微型超级电容器均具有优势。该微型电池可以通过串联的方式增加到~5 V的高放电电压(图4d)。由于其无基底的微电极设计,微型电池可以直接固定在温湿度计表面为其稳定供电(图4e)。同时,其高稳定性可以实现在高速旋转的轴流风机叶片表面稳定工作(图4f)。其高能量密度与稳定的放电平台可为电子钟持续供电400 min(图4g)。此外,通过四层微型电极的叠加,微型电池的面积能量密度可提升至3.87 mWh cm–2,同时由于分层的集流体设计,其功率密度可保持不变。

1683852685468.png 

图4. 微型电池的电化学性能与应用。

   总结与展望

在这项工作中,我们采用电沉积法制造了具有3D大孔结构的PEDOT-MnO2//Zn微型电池。通过调整3D框架表面的混合物薄膜,我们得到了兼顾高负载、高电子电导与高离子传输速度的微电极正极。该微型电池具有出色的能量/功率密度,同时展现出了极好的集成性与工作稳定性。此外其可任意堆叠的特性使其可以轻易获得高面积比容量。基于以上优势,PEDOT-MnO2//Zn微型电池极有潜力应用于下一代自供能微型电子系统。


   通讯作者简介

麦立强,武汉理工大学首席教授,博导,材料学院院长,国家杰青(2014),长江学者(2016),“万人计划”领军人才,国家重点研发计划首席科学家,英国皇家化学会会士。2004年在武汉理工获博士学位,随后在佐治亚理工学院(2006-2007)、哈佛大学(2008-2011)、加州大学伯克利分校(2017)从事博士后、高级研究学者研究。研究方向为储能材料与器件、医工交叉科学技术及应用。构筑了国际上第一个单根纳米线固态储能器件,创建了原位表征材料电化学过程的普适新模型,解决了制约储能器件发展的关键科学难题;突破了三维纳米线晶体管探针的大规模制备技术,实现了高精度、全幅度、微创细胞内信号测量,推动了单根纳米线器件在生物医学界面信号检测领域中的应用;研制了二维面探X射线原位电化学表征系统和湖北省首台套4K超高清医疗内窥镜系统,被CATL、华盛顿大学等73家单位采用。建立了分级结构高效储能材料的通用制备科学方法,实现了循环稳定性和能量密度的协同提升,推动了分级结构高效储能材料的应用。提出了调控电化学反应动力学的电子/离子双连续输运理论与调制电化学材料费米能级结构模型(“Mai-Yan模型”),突破了高能量密度和高功率密度极难协同提升的重大瓶颈。以第一或通讯作者在Nature 2篇,Nature及Cell子刊(20篇)等发表SCI论文400余篇,合作发表Nature 1篇,Science 1篇,Nature、Science及Cell子刊 5篇,SCI他引4万余次,授权发明专利138项(转让/许可28项),出版专著1部,受邀在美国材料学会年会等重要会议上做大会、主旨报告32次。主持国家重大科研仪器专项等国家级项目30余项。


文章来源:新威NEWARE ,作者新威智能App

特别声明:本站所载图文内容均来源互联网,微信公众号等公开渠道,我们对文中观点保持中立,出于更直观传递信息之目的转载稿件,仅供参考。版权归原作者和机构所有,并不代表本网赞同其观点和对其真实性负责。如有侵权,或涉及任何第三方合法权利,请及时联系我们删除(微信:snan2109;QQ:906945059),我们会及时反馈并处理完毕。

上一篇: 已经没有了