{{query}}
您好,欢迎来到源宇洲!
电池回收再利用技术平台
0411-86645829
0411-87283972
凝胶聚合物电解质增强硅负极的机械完整性
发布时间: 2025-01-13 预览次数:

▍研究背景

随着电气化趋势的加速,市场对具有更高能量密度的电化学电池的需求不断上升,以实现更长的续航里程和更小的设备尺寸。使用LiCoO2/LiFePO4正极和石墨负极的传统摇椅式锂离子电池,其能量密度已接近理论极限,无法满足日益增长的性能需求。作为替代,理论上,使用高容量硅负极与富镍正极(LiNixMnyCo1−x−yO2,NMC,x ≥ 0.8)的电池能够在电池层面实现能量密度超过300 Wh/kg。然而,基于硅负极||NMC的模型与传统的碳酸酯电解液不兼容,在高压循环期间电极结构会被破坏,导致随着循环继续,锂离子被耗尽。此外,易燃有机溶剂还会带来严重的安全风险,如液体泄漏、热失控,甚至在热冲击或机械/电气滥用情况下的发生严重的火灾或者爆炸。基于此,若要使高能量密度的电池系统在极端条件下运行,如快速充电,高低温度下稳定运行,则需要保证电极的多尺度界面稳定性和可控的电化学-机械性能。为了解决上述问题,研究人员提出使用凝胶聚合物电解质(GPE)来提高电池的机械稳定性、热稳定性和安全性。同时GPE能够通过聚合物基质固定溶剂分子,同时提供稳定的电极/电解质界面。

▍内容简介

然而,目前,将硅负极与富镍集正极LiNixMnyCo1−x−yO2(x ≥ 0.8)结合在高能量密度的电池中,还存在一些问题:锂硅合金的机械性能不稳定、正极结构在高压循环下发生塌陷,以及高温下发生严重得漏电。更糟糕的是,在串扰效应的影响下,正极材料中溶解出来的过渡金属离子迁移到负极表面加剧了活性锂的消耗。为了提高硅基负极||NMC电池原型中的阳离子利用率、应力消散和极端温度下耐受性的问题,我们提出了一种使用以环状聚碳酸亚乙烯酯为基质的凝胶聚合物电解质(PVCM-GPE)来增强硅负极的机械完整性,并且,能够与过渡金属离子螯合,以实现界面稳定性的策略。因此,采用PVCM-GPE电解质,基于硅负极和NCM811正极的电芯组装成2.7 Ah的软包电池,该软包电池能够实现325.9 Wh/kg的高能量密度(基于整个软包电池),并在2000个循环后具有88.7%的容量保持率。而具,该电池还具有自熄灭特性以及宽温度性能稳定性。总而言之,通过原位聚合策略形成的凝胶电解质对提高锂离子电池的安全性具有很大的贡献。相关成果以“An in-situ polymerization strategy for gel polymer electrolyte Si||Ni-rich lithium-ion batteries”为题发表在国际期刊Nature Communication上。论文第一作者为的Miao Bai,通讯作者为西北工业大学马越教授。


▍文章亮点

1. 通过将煤焦沥青(CTP)作为碳源加入到硅颗粒的分散体系中设计出Si/C@C复合材料,CTP在后续热处理过程中会转化为碳层,有助于缓冲硅的体积膨胀并提高结构稳定性。通过调整CTP的粒径和硅颗粒的分散性,优化复合材料的微观结构,以实现更好的电化学性能。

2. 提出了一种基于环状聚碳酸亚乙烯酯(PVCM)的GPE,具有高机械强度和良好的离子导电性。该GPE通过原位聚合形成,增强了与电极的粘附力,提高了电池的化学和机械稳定性。

3. 通过使用GPE,实现了2.7 Ah的软包电池在经过2000个循环后,其容量保持率高达88.7%。并且软包电池在0.5C的充放电条件下展示了较高能量密度(325.9 Wh/kg)和高功率密度(1463.5 W/kg)。

4. GPE有效地抑制了电解液的持续分解和过渡金属离子的串扰效应,且使电池展现出自熄灭特性和较宽的温度适应性(-20至60 °C)。


▍主要内容

a.png

多尺度下的基于硅的负极||NMC全电池模型示意图。 左侧:Si|LE|NMC原型的衰退机制,包括:i 硅的裂纹和电极粉碎;ii 由SEI的持续破坏和重建引起的Li+损耗;iii 由于正极-负极串扰效应导致的SEI破裂和电流泄露;iv 液体泄漏和易燃性带来的安全风险。右侧:所提出的Si/C@C|GPE|NMC系统的特点,包括:I Si/C@C负极的结构设计;II 通过渗透不易燃的GPE增强界面稳定性和电极的机械稳定性;III 抑制的串扰效应;IV GPE对电池系统的阻燃性。


b.png

对Si/C@C复合材料制造过程的示意图

a. 过程I:砂磨硅的粒径优化;过程II:选择最佳CTP用于共形硅封装;过程III:喷雾干燥和热解程序。b. Si/C-5复合材料的SEM图像,经FIB处理,以及相应的C和Si元素的EDS图像。插图是界面粗糙度的放大图像。c. 不同CTP粒径大小的Si/C的比表面积和循环寿命(80%容量保持率,CR),平均库仑效率(平均CE是从第四个循环到80%容量保持率的CE平均值)和初始库仑效率(线上的阴影表示π误差条)。d. 不同CTP粒径的Si/C复合材料的容量保持率(CR)

c.png

PVCM-GPE的关键特性:

a. PVCM-GPE的制备过程示意图。b. 聚合前后含有不同量VC的液态电解液的光学照片(上图为聚合前,下图为聚合后)。c. LiDFOB、VC、PVCM、LiDFOB-VC/EC/DEC和PVCM-GPE的傅里叶变换红外光谱(FT-IR)吸收谱图。d. PVCM和PVCM-GPE的XRD图案。e. 液态电解液(LE)、原位PVCM-GPE和非原位PVCM-GPE的离子导电性和锂离子迁移数随温度变化的曲线。f. PVCM和PVCM-GPE的应力-应变曲线。g. PVCM-GPE的燃烧实验。h. 燃烧后的PVCM-GPE的SEM图像。


d.png

在锂化过程中的化学机械模拟的应力分:

a. Si/G@C|LE的锂化状态下的应力分布建模。b. Si/C@C|GPE在不同锂化状态下的应力分布建模,以及在深度锂化状态下单个复合颗粒的应力分布。c. Si/G@C|LE中硅纳米颗粒和碳层的应力演变。d. Si/C@C|GPE中硅纳米颗粒和碳层的应力演变。e. 两种模型中硅和碳层的应力比较。f. 锂化前后带有GPE或LE的Si/C@C电极的横截面光学图像。

e.png

基于硅的复合负极的电化学性能。

a 循环稳定性和CR值,以及b Si/C@C|GPE、Si/C@C|LE、Si/G@C|LE负极的首次充放电曲线(带有pi误差条)、ICE和平均CE(约2.8 mg cm−2) 在0.5 C的电流密度下测试(1 C定义为1320 mA g−1)。c Si/C@C|GPE和Si/C@C|LE负极的倍率性能。d 在0.5 C下Si/C@C-Gr|GPE负极的循环性能。e 关于Si/C@C-Gr|GPE的CR、ICE和平均CE的总结。f Si/C@C|GPE、Si/C@C|LE、Si/G@C|LE负极的GITT(恒电位间歇滴定技术)曲线。g Si/C@C和Si/G@C负极中Li+迁移路径的示意图。h Si/C@C|GPE和Si/C@C|LE负极的剥离测试。插图显示剥离测试后电极的照片。


f.png

Si/C@C|GPE|NMC811全电池中CEI和SEI的表征。

a. EC、DEC、VC和LiDFOB与Li+相互作用的HOMO和LUMO能级。b.分别从Si/C@C-Gr|GPE|NMC811和Si/C@C-Gr|LE|NMC811模型中拆解出的NMC811正极在100个循环后的C 1s、F 1s和B 1s XPS谱图。c. 提出的GPE在电极表面上的SEI和CEI结构模型。d. 涉及CEI层中LiDFOB盐与TM阳离子的螯合机制。e.从Si/C@C-Gr|GPE|NMC811和Si/C@C-Gr|LE|NMC811模型中获得的Si/C@C负极在500个循环后的Ni 2p XPS谱图,f. ICP-MS分析,以及g. TOF-SIMS深度剖面。h. 针对BO、LiF258NiF3和总结构的TOF-SIMS的3D图像。

g.png

Si/C@C-Gr|GPE|NMC全电池的电化学性能。

a. Si/C@C-Gr 550负极、NMC正极以及Si/C@C-Gr 550|GPE|NMC软包电池的充放电曲线。b. 全电池的循环行为。c. Si/C@C-Gr|GPE|NMC全电池的倍率性能和宽温度范围性能。d. 与NMC结合在GPE中的Si/C@C-Gr 650、Si/C@C-Gr 850、Si/C@C-Gr 1000和Si/C@C-Gr 1250负极的重量/体积能量密度。e. 与先前文献中最大功率密度下的能量密度进行比较的Ragone图。f.Si/C@C-Gr 1000|GPE|NMC的原位XRD光谱的等高线图和g. 电压曲线。h. 分别从Si/C@C-Gr 1000|GPE|NMC和Si/G@C-Gr 1000|LE|NMC中获得的NMC811的(003)衍射峰的相应位移和沿c轴和a轴的晶格参数计算。


▍总结与展望

总结来看,该研究系统地揭示了高容量硅负极在高能量密度电池原型中的循环稳定性差的原因。相应地,提出了一种与GPE渗透网络结合的坚固的Si/C@C复合结构的设计策略,该策略使得电极在高面容量负荷下也展现出优异的机械强度。同时,高弹性的PVCM基质结合了LiDFOB盐,它促进了与硅负极和NMC正极接触的固态电解质界面的高倍率离子导电性以及稳定的正极电解质界面。而且,这种不易燃的GPE有效地抑制了电解质的持续分解和过渡金属离子引起的穿梭效应,增强了电池系统的热稳定性,保证了电池的安全运行。通过将Si/C@C-Gr负极和NMC正极与PVCM-GPE结合,组装了2.7 Ah的软包电池,该电池在极端功率输出(1463.5 Wh/kg)的工况下,持续循环2000次后,实现了88.7%的容量保持率。此外,在较宽的温度范围内(-20~60 ℃)都展现出良好的电化学性能,且基于整个软包电池的条件下,其能量密度高达325.9 Wh/kg。这项研究不仅阐明了高能量密度电池原型的多尺度性能衰减机制,还提出了原位聚合方法来克服Si/C@C|NMC811电池中的关键问题,旨在推动能量/功率密集型储能技术的快速发展。

文献链接https://doi.org/10.1038/s41467-024-49713-z


文章来源:高低温特种电池

特别声明:本站所载图文内容均来源互联网,微信公众号等公开渠道,我们对文中观点保持中立,出于更直观传递信息之目的转载稿件,仅供参考。版权归原作者和机构所有,并不代表本网赞同其观点和对其真实性负责。如有侵权,或涉及任何第三方合法权利,请及时联系我们删除(微信:snan2109;QQ:906945059),我们会及时反馈并处理完毕。

下一篇: 已经没有了